1769国产一区二区三区_午夜顶级AAAAA片在线看_免费一区二区三区四区_五月丁香亚洲色婷婷

課程目錄:Introduction Deep Learning and Neural Network for Engineers培訓
4401 人關注
(78637/99817)
課程大綱:

         Introduction Deep Learning and Neural Network for Engineers培訓

 

 

 

 

The course is divided into three separate days, the third being optional.

Day 1 - Machine Learning & Deep Learning: theoretical concepts
1. Introduction IA, Machine Learning & Deep Learning

- History, basic concepts and usual applications of artificial intelligence far

Of the fantasies carried by this domain

- Collective Intelligence: aggregating knowledge shared by many virtual agents

- Genetic algorithms: to evolve a population of virtual agents by selection

- Usual Learning Machine: definition.

- Types of tasks: supervised learning, unsupervised learning, reinforcement learning

- Types of actions: classification, regression, clustering, density estimation, reduction of

dimensionality

- Examples of Machine Learning algorithms: Linear regression, Naive Bayes, Random Tree

- Machine learning VS Deep Learning: problems on which Machine Learning remains

Today the state of the art (Random Forests & XGBoosts)

2. Basic Concepts of a Neural Network (Application: multi-layer perceptron)

- Reminder of mathematical bases.

- Definition of a network of neurons: classical architecture, activation and

Weighting of previous activations, depth of a network

- Definition of the learning of a network of neurons: functions of cost, back-propagation,

Stochastic gradient descent, maximum likelihood.

- Modeling of a neural network: modeling input and output data according to

The type of problem (regression, classification ...). Curse of dimensionality. Distinction between

Multi-feature data and signal. Choice of a cost function according to the data.

- Approximation of a function by a network of neurons: presentation and examples

- Approximation of a distribution by a network of neurons: presentation and examples

- Data Augmentation: how to balance a dataset

- Generalization of the results of a network of neurons.

- Initialization and regularization of a neural network: L1 / L2 regularization, Batch

Normalization ...

- Optimization and convergence algorithms.

3. Standard ML / DL Tools

A simple presentation with advantages, disadvantages, position in the ecosystem and use is planned.

- Data management tools: Apache Spark, Apache Hadoop

- Tools Machine Learning: Numpy, Scipy, Sci-kit

- DL high level frameworks: PyTorch, Keras, Lasagne

- Low level DL frameworks: Theano, Torch, Caffe, Tensorflow

Day 2 - Convolutional and Recurrent Networks
4. Convolutional Neural Networks (CNN).

- Presentation of the CNNs: fundamental principles and applications

- Basic operation of a CNN: convolutional layer, use of a kernel,

Padding & stride, feature map generation, pooling layers. Extensions 1D, 2D and

3D.

- Presentation of the different CNN architectures that brought the state of the art in classification

Images: LeNet, VGG Networks, Network in Network, Inception, Resnet. Presentation of

Innovations brought about by each architecture and their more global applications (Convolution

1x1 or residual connections)

- Use of an attention model.

- Application to a common classification case (text or image)

- CNNs for generation: super-resolution, pixel-to-pixel segmentation. Presentation of

Main strategies for increasing feature maps for image generation.

5. Recurrent Neural Networks (RNN).

- Presentation of RNNs: fundamental principles and applications.

- Basic operation of the RNN: hidden activation, back propagation through time,

Unfolded version.

- Evolutions towards the Gated Recurrent Units (GRUs) and LSTM (Long Short Term Memory).

Presentation of the different states and the evolutions brought by these architectures

- Convergence and vanising gradient problems

- Classical architectures: Prediction of a temporal series, classification ...

- RNN Encoder Decoder type architecture. Use of an attention model.

- NLP applications: word / character encoding, translation.

- Video Applications: prediction of the next generated image of a video sequence.

Day 3 - Generational Models and Reinforcement Learning
6. Generational models: Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN).

- Presentation of the generational models, link with the CNNs seen in day 2

- Auto-encoder: reduction of dimensionality and limited generation

- Variational Auto-encoder: generational model and approximation of the distribution of a

given. Definition and use of latent space. Reparameterization trick. Applications and

Limits observed

- Generative Adversarial Networks: Fundamentals. Dual Network Architecture

(Generator and discriminator) with alternate learning, cost functions available.

- Convergence of a GAN and difficulties encountered.

- Improved convergence: Wasserstein GAN, Began. Earth Moving Distance.

- Applications for the generation of images or photographs, text generation, super-
resolution.

7. Deep Reinforcement Learning.

- Presentation of reinforcement learning: control of an agent in a defined environment

By a state and possible actions

- Use of a neural network to approximate the state function

- Deep Q Learning: experience replay, and application to the control of a video game.

- Optimization of learning policy. On-policy && off-policy. Actor critic

architecture. A3C.

- Applications: control of a single video game or a digital system.

尤物视频网站在线观看| 可以免费在线看黄的网站| 青草国产在线| 久久成人亚洲| 精品视频一区二区三区免费| 日韩专区第一页| 四虎影视久久| 成人高清视频在线观看| 国产不卡在线观看| a级毛片免费全部播放| 日本在线不卡视频| 亚洲女人国产香蕉久久精品| 午夜家庭影院| 九九干| 精品国产亚一区二区三区| 欧美激情一区二区三区在线播放| 91麻豆国产福利精品| 深夜做爰性大片中文| 999久久66久6只有精品| 欧美日本国产| 精品国产三级a| 国产麻豆精品视频| 国产视频久久久久| 尤物视频网站在线观看| 青青青草影院 | 国产91精品系列在线观看| 尤物视频网站在线观看| 日韩欧美一及在线播放| 可以免费在线看黄的网站| 成人免费网站久久久| 国产精品免费久久| 91麻豆精品国产自产在线观看一区| 一级女性全黄久久生活片| 欧美夜夜骑 青草视频在线观看完整版 久久精品99无色码中文字幕 欧美日韩一区二区在线观看视频 欧美中文字幕在线视频 www.99精品 香蕉视频久久 | 国产视频久久久久| 日韩专区亚洲综合久久| 国产伦久视频免费观看视频| 精品国产一区二区三区久久久蜜臀| 黄视频网站在线免费观看| 国产一区二区精品久久| 精品国产亚一区二区三区| 国产美女在线一区二区三区| 九九久久99综合一区二区| 成人高清视频在线观看| 久久精品成人一区二区三区| 深夜做爰性大片中文| 九九干| 日本特黄特色aa大片免费| 99久久精品费精品国产一区二区| 亚洲精品中文字幕久久久久久| 日本伦理网站| 亚飞与亚基在线观看| 成人在免费观看视频国产| 精品毛片视频| 色综合久久天天综合绕观看| 黄色免费三级| 国产成人欧美一区二区三区的| 亚洲天堂一区二区三区四区| 午夜在线亚洲男人午在线| 99久久精品国产免费| 深夜做爰性大片中文| 国产亚洲男人的天堂在线观看| 国产一区二区高清视频| a级精品九九九大片免费看| 99热精品在线| 国产高清视频免费观看| 欧美夜夜骑 青草视频在线观看完整版 久久精品99无色码中文字幕 欧美日韩一区二区在线观看视频 欧美中文字幕在线视频 www.99精品 香蕉视频久久 | 久草免费在线视频| 国产视频一区二区三区四区| 欧美激情影院| 欧美国产日韩一区二区三区| 欧美电影免费| 欧美一级视| 免费一级生活片| 国产麻豆精品视频| 欧美国产日韩一区二区三区| 99久久精品费精品国产一区二区| 日本免费乱理伦片在线观看2018| 国产精品12| 精品视频免费观看| 999久久66久6只有精品| 人人干人人草| 国产亚洲精品成人a在线| 91麻豆精品国产综合久久久| 可以免费看毛片的网站| 四虎论坛| 欧美激情伊人| 日韩在线观看视频免费| 国产视频久久久久| 国产91精品一区二区| 美女免费精品高清毛片在线视| 亚洲精品影院一区二区| 欧美国产日韩一区二区三区| 尤物视频网站在线观看| 日本久久久久久久 97久久精品一区二区三区 狠狠色噜噜狠狠狠狠97 日日干综合 五月天婷婷在线观看高清 九色福利视频 | 99色吧| 久久精品店| 天天做日日爱夜夜爽| 国产福利免费视频| 成人影视在线播放| 亚飞与亚基在线观看| 国产网站免费| 久久久久久久网| 国产91精品一区二区| 国产极品精频在线观看| 日韩女人做爰大片| 欧美激情一区二区三区在线播放| 久草免费在线视频| 亚洲www美色| 国产伦久视频免费观看视频| 99久久精品国产免费| 四虎影视库| 欧美夜夜骑 青草视频在线观看完整版 久久精品99无色码中文字幕 欧美日韩一区二区在线观看视频 欧美中文字幕在线视频 www.99精品 香蕉视频久久 | 日韩女人做爰大片| 国产高清视频免费观看| 国产高清视频免费观看| 日韩专区在线播放| 国产一区二区精品久久91| 精品视频在线观看免费| 精品国产三级a| 久久国产影视免费精品| 国产成人精品一区二区视频| 欧美爱色| 精品视频在线看 | 精品国产三级a| a级毛片免费全部播放| 欧美日本免费| 深夜做爰性大片中文| 国产精品12| a级毛片免费全部播放| 欧美日本免费| 欧美激情一区二区三区视频高清| 亚飞与亚基在线观看| 韩国毛片免费大片| 国产亚洲男人的天堂在线观看| 日韩免费片| a级毛片免费全部播放| 一级女性全黄久久生活片| 国产精品1024永久免费视频 | 国产亚洲精品成人a在线| 国产成人欧美一区二区三区的| 你懂的福利视频| 一本伊大人香蕉高清在线观看| 欧美激情一区二区三区在线播放| 欧美一区二区三区性| 天天色成人| 你懂的在线观看视频| 日韩专区在线播放| 精品国产亚一区二区三区| 国产视频一区二区三区四区| 成人免费观看视频| 国产91精品系列在线观看| 天天做日日爱夜夜爽| 成人免费福利片在线观看| 精品久久久久久中文| 九九干| 一级女人毛片人一女人| 97视频免费在线观看| 精品视频在线观看一区二区三区| 999精品视频在线| 亚欧乱色一区二区三区| 国产不卡高清在线观看视频| 欧美日本免费| 精品在线观看一区| 青青青草视频在线观看| 美女被草网站| 精品国产香蕉在线播出 | 亚洲 国产精品 日韩| 国产精品自拍在线观看| 国产成人精品综合| 亚洲精品影院| 99久久精品费精品国产一区二区| 国产一区二区高清视频| 亚洲www美色| 久久99爰这里有精品国产| 国产成人欧美一区二区三区的| 国产精品自拍在线观看| 精品久久久久久中文| 成人免费观看的视频黄页| 久久99爰这里有精品国产| 国产亚洲精品成人a在线| 日本特黄特黄aaaaa大片| 国产视频一区二区三区四区| 亚洲www美色| 亚欧成人乱码一区二区| 成人免费观看的视频黄页| 美女被草网站| 成人高清免费| 天天色色网| 国产视频一区二区三区四区| 日本免费乱理伦片在线观看2018| 99久久精品费精品国产一区二区| 精品久久久久久中文| 麻豆网站在线看| 97视频免费在线观看| 成人影院一区二区三区| 成人免费一级纶理片| 一级毛片视频免费| 国产一区精品| 成人高清免费|